FFAG Arc Field Map Status

xf = -4.641mm xd = 17.286mm

Rotations:

Qf: 1.1388°

Qd: -1.0833°

α: 2.556° B: -2.444°

Jim Crittenden

Cheta Collaboration Meeting

BNL, 5 May 2016

Berg-Witte Iterative Field Maps (BWIFMs)

The use of curvilinear map points in a Cartesian coordinate system presents a challenge when assessing the quality of the maps

Good-field region in situ for Qf

The shape of the good-field region in situ is quite different.

The extent is slightly smaller. NB: Field calculaton accuracy excellent.

Good-field region in situ: compare Qf with Qd

The shape of the good-field region in situ is for Qd is quite different than Qf.

The region of <+-1% is now > 6 cm (!)

OPERA 3D Model Development at Cornell

Geometry and BH data for JFE steel provded by Holger.
Half-volume geometry with no L/R asymmetries allows estimate of numerical accuracy.

QD magnet with QF steel turned off

(QF 13.69 cm long, QD 11.76 cm long, separation 7 cm, no rotation)

Gradient uniformity better than 1% over ± 3.6 cm (HW design of March 2016).

Crosstalk effects on field gradients (Chris' analysis of my field tables)

Nearby magnet reduces field gradient at 2-3% (11-14%) level if its PMs are off (on).

Sum of separate maps with dummies coincides well with combined map.

Recent improved pole/high gradient design

Longer convergence required re-tuning the mesh. Still very slow, indicating mesh too coarse in saturation regions. But calculation accuracy good and reproduces HW 2D model well.